

2005 TRIAL HIGHER SCHOOL CERTIFICATE

PM FRIDAY 12 AUGUST

Mathematics Extension 1

Staff Involved:

- · GIC*
- AES*MRB
- VAB
- PJR
- GDH
- · RMH
- 90 copies

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using blue or black pen
- Make sure your Barker Student Number is on ALL pages
- Board-approved calculators may be used
- A table of standard integrals is provided on page 9
- ALL necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged working

Total marks – 84

- Attempt Questions 1-7
- All questions are of equal value

Total marks -84
Attempt Questions 1
ALL questions are of equal value

Answer each question on a SEPARATE sheet of paper

		Marks
Ques	tion 1 (12 marks) [START A NEW PAGE]	
(a)	Evaluate $\lim_{x\to 0} \frac{\sin 2x}{5x}$	2
(b)	Find the acute angle between the lines $2x - y = 0$ and $x + 3y = 0$, giving the answer correct to the nearest minute.	3
(c)	Simplify $\frac{e^{\ln(8+3x)}}{64-9x^2}$	2
(d)	A is the point (-2, 1) and B is the point (x, y) . The point P (13, -9) divides AB externally in the ratio 5:3. Find the values of x and y for point B.	2

e) Solve the inequality
$$\frac{x}{x-3} \le 3$$

(a) Evaluate $\int_0^2 2x \sqrt{1-\frac{x}{2}} dx$ using the substitution $u=1-\frac{x}{2}$

Solve for θ : $\cos \theta = \sin 2\theta$ for $0 \le \theta \le 2\pi$

2

2

2

2

- (c) (i) Express $\sin x + \sqrt{3} \cos x$ in the form $R \sin(x + \alpha)$ where R > 0 and $0 \le \alpha \le \frac{\pi}{2}$
 - (ii) Hence, sketch $y = \sin x + \sqrt{3} \cos x$ for $-2\pi \le x \le 2\pi$ showing any x and y intercepts.
 - (iii) Find the general solution to $\sin x + \sqrt{3} \cos x = \sqrt{2}$

Question 3 (12 marks) [START A NEW PAGE]

(a) Find the domain and range of $y = 3 \sin^{-1}(2x - 1)$ (A sketch of the curve is **not** necessary, but may be helpful).

2

1

1

2

2

Marks

- (b) If $f(x) = (1 + x^2) \tan^{-1} x$ find f'(x)
- (c) Find $\int \frac{dx}{\sqrt{16 x^2}}$
- (d) The function $f(x) = 3 + \sqrt{x-1}$ is sketched below.

- (i) State the domain of f(x)
- (ii) Explain why an inverse function, $f^{-1}(x)$, exists.
- (iii) Find $f^{-1}(x)$
- (iv) On what line will the curves y = f(x) and $y = f^{-1}(x)$ intersect?
 - (β) Hence, find the point of intersection of the graphs y = f(x) and $y = f^{-1}(x)$

3

3

2

2

2

1

2

Ouestion 4 (12 marks) [START A NEW PAGE]

- (a) Evaluate $\int_0^{2\pi} \sin^2 2x \, dx$
- (b) If $\tan A$ and $\tan B$ are the roots of the equation $3x^2 5x 1 = 0$, find the value of $\tan (A + B)$.

(c) Assuming that $r \neq 1$, prove by induction that $a + ar + ar^2 + ar^3 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$ for all positive integers n

- (d) Given that the curve $y = x \sin^{-1} x$ has only one stationary point, show that this stationary point occurs at (0, 0) and that it is a minimum turning point.
 - (ii) Hence, or otherwise, sketch the curve $y = x \sin^{-1} x$ on the x y plane.

(a) A particle, initially at a fixed point O, is moving in a straight line. After time t seconds, it has displacement x metres from O and its velocity v ms⁻¹ is given by v = 6 - 2x.

IBEGIN A NEW PAGE

Ouestion 5 (12 man)

- (i) Find the acceleration of the particle at the origin.
- (ii) Show that $t = -\frac{1}{2}\log_e\left(1 \frac{x}{3}\right)$ and hence find x as a function of t.
- (iii) What happens to x as t increases without bound?
- (b) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are two points on the parabola $x^2=4ay$. The tangents at P and Q meet at T which is always on the parabola $x^2=-4ay$.

- (i) Derive the equations of the tangents to the parabola at P and Q.
- (ii) Show that T is the point (a(p+q), apq)
- (iii) Show that $p^2 + q^2 = -6pq$

2

2

2

2

2

2

3

3

3

Question 6 (12 marks) [START A NEW PAGE]

- (a) A particle is oscillating in simple harmonic motion such that its displacement x metres from the origin is given by the equation $\frac{d^2x}{dt^2} = -16x$, where t is time in seconds.
 - (i) Show that $x = a\cos(4t + \alpha)$ is a solution for the motion of this particle. (a and α are constants)
 - (ii) Initially, the velocity is 4 ms⁻¹ and displacement from the origin is 5 m. Show that the amplitude of the oscillation is $\sqrt{26}$ metres.
 - (iii) What is the maximum speed of the particle?
- (b) In a particular equatorial African swamp, a colony of tsetse flies increases its population (P) according to the differential equation $\frac{dP}{dt} = k(P 10000)$, where k is the growth rate of the colony. Initially, there were 15 000 tsetse flies and after six months there were 25 000 tsetse flies.
 - (i) Show that $P = 10000 + P_o e^{kt}$ is a solution of the above equation. (k and P are constants)
 - (ii) Determine P_0 and the growth rate k in exact form.
 - (iii) Determine the number of tsetse flies after one year.

(a) Find the term independent of x in the expansion of $\left(x + \frac{2}{x^2}\right)^{12}$

A football, lying at point F on level ground is 4 metres away from and 1 metre below the top of a flat-roofed long narrow green house. The football is kicked with an initial velocity of 12 m/s at an angle of projection θ .

- (i) Using $g = -10 \text{ ms}^2$, show that the football's trajectory at time t seconds after being kicked may be defined by the equations $x = 12t\cos\theta$ and $y = -5t^2 + 12t\sin\theta 1$ where x and y are the horizontal and vertical displacements, in metres, of the football from the origin O shown in the diagram. (Neglect air resistance).
- (ii) Given that $\theta = 30^{\circ}$, how far from D will the football land on top of the green house?
- (iii) Find the range of values of θ , to the nearest degree, at which the football must be kicked so that it will land to the right of D. 3

EXT | TRIAL 2005

| a) lim
$$\sin 2x = \lim \frac{\sin 2x}{2x} \times \frac{2}{5}$$

| a) $\lim \frac{\sin 2x}{\sin 2x} = \lim \frac{\sin 2x}{2x} \times \frac{2}{5}$

| a) $\lim \frac{\sin 2x}{\sin 2x} = \lim \frac{\sin 2x}{2x} \times \frac{2}{5}$

| a) $\lim \frac{\sin 2x}{\sin 2x} = \lim \frac{\sin 2x}{2x} \times \frac{2}{5}$

| a) $\lim \frac{\sin 2x}{\sin 2x} = \lim \frac{\sin 2x}{2x} \times \frac{2}{5}$

| a) $\lim \frac{\sin 2x}{\sin 2x} = \lim \frac{\sin 2x}{2x} \times \frac{2}{5}$

| a) $\lim \frac{\cos 2x}{\sin 2x} = \frac{2}{5}$

| b) $\lim \frac{\cos 2x}{\sin 2x} = \frac{2}{5}$

| a) $\lim \frac{\cos 2x}{\sin 2x} = \frac{2}{5}$

$$b) + an (\alpha - \beta) = \frac{2}{5}$$

$$1 + 2x - \frac{1}{3}$$

$$= \frac{7}{3} / \frac{1}{3} = 7$$

c)
$$\frac{\ln (8+3\pi)}{64-9\pi^2} = \frac{8+3\pi}{(8+3\pi)(8-3\pi)} = \frac{8+3\pi}{\frac{4}{4-3}} = \frac{3}{5} = \frac{3}{5} = \frac{4}{5} = \frac{3}{5} = \frac{4}{5} = \frac{4}{5} = \frac{3}{5} = \frac{4}{5} = \frac{4}{5} = \frac{3}{5} = \frac{4}{5} = \frac{4$$

$$= \frac{1}{8-3x}, 3x \neq \pm 8$$

d)
$$\frac{5}{5-3} \le 3$$
 True $x > 4^{\frac{1}{2}}$

$$\frac{5}{5-3} \le 3$$
 True $x > 4^{\frac{1}{2}}$

$$\frac{2}{8} (x,y)$$

$$\frac{2}{8} (x,y)$$

$$\frac{2}{8} (x,y)$$

$$\frac{5}{5-3} \le 3$$
 True $x > 4^{\frac{1}{2}}$

$$\frac{2}{8} (x,y)$$

$$A(-2,1)$$
 $x = \frac{2}{5} \times 15 + -2 = '4$

$$y = \frac{2}{5}x - 10 + 1 = -3$$

e)
$$\frac{x}{x-3} \le 3$$
 $x \ne 3$

Solve
$$x = 3(x-3)$$

$$=$$
 $2x = 9$

Test
$$x < 3$$
 eig. $x = 1$

$$1 - 3 \le 3$$
 True $x < 3$

Test
$$3 < x < 4 \pm e.g. x = 4$$
 $4 \le 3$ False $x \notin (3, 4 \pm e.g. x)$

$$= \frac{1}{8-3x}, \frac{3x \neq \pm 8}{\sqrt{1 + \frac{1}{1 + \frac{1}{2}}}} \frac{1}{x > 4 \pm \frac{1}{2}} = e.g. \quad x = 5$$

$$2.a) let u = 1 - \frac{\chi}{2} \Rightarrow du =$$

$$\Rightarrow \chi = 2(1 - u) \Rightarrow dx = -2du$$

$$\Rightarrow 1 + \chi = 0: u = 1$$

$$1 + \chi = 2: u = 0$$

$$\int_{2\pi}^{1.4.} \int_{1-\frac{24}{2}}^{2} doe = \int_{4(1-u)}^{4(1-u)} \int_{u}^{4} x - 2du$$

$$= -8 \int_{4}^{4} \left(\int_{u}^{4} - u \int_{u}^{4} u \right) du$$

$$= 8 \left[\frac{2}{3} u^{3/2} - \frac{2}{5} u^{5/2} \right]_{0}^{1}$$

$$= 8 \left[\frac{2}{3} - \frac{2}{5} - (0 - 0) \right]$$

$$= 8x \frac{10-6}{15} = \frac{32}{15}$$

$$\Rightarrow \cos \theta = 2\sin \theta \cos \theta$$

$$\Rightarrow \cos \theta (1 - 2\sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 - 2\sin \theta) = 0$$

$$= |\cos \theta| = 0$$

$$=) O = IIOR 3II OR II OR 5II 6$$

2c)i)
$$R \sin (x + \infty)$$

= $R \sin x \cos x + R \cos x \sin x$
= $\sin x + \sqrt{3} \cos x$

$$\Rightarrow R = \sqrt{1^2 + (\sqrt{3})^2} = 2 \qquad (R > 0)$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\sqrt{3}}{1}$$
 05 α 5 $\frac{\pi}{2}$

$$\Rightarrow$$
 $\forall = \mathbb{I}$

1.e.
$$\sin x + \sqrt{3} \cos x = 2 \sin(x + \frac{\pi}{3})$$

1.e.
$$\sin x + \sqrt{3} \cos x = 2 \sin(x + \frac{\pi}{3})$$

$$y = \sin x + \sqrt{3} \cos x$$

$$y = \sin x + \sqrt{3} \cos x$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \sin^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} + C, -4 < x < 4$$

$$y = \cos^{-1} \frac{x}{4} +$$

iii) 1.e Solve 2 sur
$$(x+\frac{\pi}{3})=\sqrt{2}$$

$$\Rightarrow \sin\left(x+\frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow x + \frac{\pi}{3} = n\pi + (-1)^{n} + \frac{\pi}{4} \quad n \in \mathbb{Z}$$

$$x = n\pi - \pi + (-1)^n + \frac{\pi}{4} / 1$$

Domain!
$$-1 \le 2x - 1 \le 1$$

$$= 3 x : 0 \le x \le 1$$
Range: $5y := \frac{3\pi}{2} \le y \le \frac{3\pi}{2}$

$$f(x) = (1 + x^{2}) + an^{-1}x$$

$$f'(x) = an + an^{-1}x + \frac{(1 + x^{2})}{1 + x^{2}}$$

$$= 1 + 2x + an^{-1}x$$

c)
$$\int \frac{dx}{\sqrt{16-x^2}} = \sin^{-1}\frac{x}{4} + C_3 - 4 < x < 4$$

ii)
$$f(x)$$
 is one to one

iii) Let
$$y = f^{-1}(x)$$
 then

 $x = 3 + \sqrt{y-1}$ $y \ge 1, x \ge 3$

gives $f^{-1}(x)$.

1.2. $(x-3)^2 = y-1$

1.2.
$$(x-3)^{2} = y-1$$

 $\Rightarrow y = (x-3)^{2} + 1 \quad x \ge 3$
14. $f^{-1}(x) = x^{2} - 6x + 10$

$$3d)$$
 $(iv) \propto) y = x$

$$\beta$$
) Hence graphs intersect where $x = (x-3)^2 + 1$

$$\Rightarrow x = x^2 - 6x + 9 + 1$$

$$=) x^2 - 7x + 10 = 0$$

$$\Rightarrow (x-5)(x-2) = 0$$

$$4a) \int_{a}^{2\pi} \sin^{2} 2u \, dx \qquad Now$$

$$\cos 2A = 1 - 2\sin^{2} t$$

$$= \int_{a}^{2\pi} \frac{1 - \cos 4x}{2} \, dx$$

$$\cos^{2} A = 1 - \cos 2A$$

$$= \frac{1}{2} \left[x - \frac{\sin 4x}{4} \right]_{0}^{2\pi}$$

$$= \frac{1}{2} x \left[2\pi - 0 - (0 - 0) \right] = \pi$$
 $\sqrt{2\pi}$

b)
$$\tan A + \tan B = \alpha + \beta = \frac{5}{3}$$

 $\tan A \times \tan B = \alpha \beta = -\frac{1}{3}$
 $\tan (A + B) = \frac{5}{3} / (1 + \frac{1}{3}) = \frac{5}{3} / \frac{24}{3}$
 $= \frac{5}{24}$

c) Let
$$S_n = a + a + a^2 + a^2 + a^3 + ... + a^{n-1}$$

Show $S_n = a(r^n - 1)$
 $r = 2$

Step $1 = 1$
 $1 = 1$
 $1 = 2$
 $1 = 2$
 $1 = 3$

RHS: $a(r^n - 1) = a(r^1 - 1)$
 $1 = 3$
 $1 = 3$

as required

Step $2 : A = 3$: And $1 = 3$

Show three $1 = 3$
 $1 = 3$

Now $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 =$

Step 3 Show mue frall n: Step! showed statement time of n=1. By Step 2 of true for n=1 then true fr n=1+1=2. Sum lanly of him $f_n = 2$ Then brune $f_n = 2+1$ and = 3he. Statement is true for all n=1,2,3... all $n \in \mathbb{Z}^+$. 4|d)i) $y = x sin^{-1}x$ $\frac{dy}{dx} = \sin^{-1} x + \frac{x}{\sqrt{1-x^2}}$ Stationary points occur when dy = 0 $|L when <math>sin^{-1}x + \frac{x}{\sqrt{1-x^2}} = 0$ Let $x=0 \Rightarrow dy = sm'0 + 0$ dx = 0 + 0Lence x = 0 is a statement pt. Test nature find signed dig $f(x) = 0 - \varepsilon$ and $x = 0 + \varepsilon$ $\frac{2 \left| -0.5 \right|}{\text{oly}} = \frac{2 \left| -0.5 \right|}{$

1.1. minimum at x=0, y=0 $(0, \frac{1}{2})$ (no other S.P. in domain - 15 of 51 d) ii) Domain -15 x 51 Range 0 SySI 18.P. a min at x=0, y=0 (5) 至 (1) 巨) $\frac{dy}{dt} \rightarrow -\infty$ as $x \rightarrow -1^+$ dx = + 00 as x = +1" // 5a) t=0, x=0 v=6-2x $i) \dot{x} = d \left(\frac{1}{2}v^2\right)$ $= \frac{d}{dx} \frac{(6-2x)^2}{x^2} = \frac{d}{dx} \frac{36-24x+4}{2}$ = -12 + 4x= -12 When x = 0 ii) $\frac{dx}{dt} = v = 6 - 2x$ $t = -\frac{1}{2} \ln (6 - 2x) + C$

5a) ii) ctd When x = 0, t =0 1.l. $0 = -\frac{1}{2} \ln 6 + C$ =) $t = -\frac{1}{2} \ln (6 - 2\pi) + \frac{1}{2} \ln b$ $= -\frac{1}{2} \ln \frac{6 - 2x}{6}$ $=-\frac{1}{2} \ln \left(1-\frac{2L}{3}\right)$ $\Rightarrow \ln\left(1-\frac{2t}{3}\right) = -2t$ $\Rightarrow \frac{1-x}{3}=e^{-\lambda t}$ $\Rightarrow \frac{\chi}{3} = 1 - \epsilon^{-2t}$ $= 3 - 3e^{-2t}$ iii) x -> 3 b) i) $\frac{dy}{dx} = \frac{dy}{dp} / \frac{dx}{dp}$ TP

= $\frac{2ap}{2a} = \frac{p}{2a}$ $\frac{dy}{dx} = 2aq/2a = q$ tangent TP: $y - \alpha p^2 = p(x - 2\alpha p)$ $\Rightarrow y - ap^2 = px - 2ap^2$ $y = px - ap^2$ similarly targent TP

(ii) Salue TP, TP similtaneously 1.e $px - ap^2 = qx - aq^2$ $\Rightarrow (p-q)x = a(p^2-q^2)$ x = a (p+2)(p-2)P-2 (P +2) $= \frac{x = a(p+q)}{a(p+q)}$ $y = p a (p+q) - ap^{2}$ $= ap^{2} + apq - ap^{2}$ 10. Tb (a(p+q), apq) 1 iii) Now Thes an x2= -4 ay .: $(a(p+q)]^2 = -4a(apq)$ $\Rightarrow a^{2} (p+q)^{2} = -4a^{2}pq$ $\Rightarrow (p+q)^{2} = -4pq (a+0) |i| t = 0 p = 15000 - 0$ $\Rightarrow p^2 + 2pq + q^2 = -4pq$ $\Rightarrow p^2 + q^2 = -6pq N$ 6.i) Show that d'x = -16x x = a cos (4 ++ x) $= \frac{1}{100} dx = -4asm(4t+x)$ $y = e^{x - aq^2} \sqrt{\frac{d^2x}{dt^2}} = -\frac{16a \text{ sm}(4t + x)}{as required} \sqrt{\frac{d^2x}{dt^2}} = -\frac{16a \text{ sm}(4t + x)}{as re$

i) t=0, v=4 = 4= -4 a sm d= smd = -1 t=0, x=5 $= 3 \quad 5 = \alpha \quad \cos \alpha \quad \Rightarrow \quad \cos \alpha = \frac{5}{\alpha}$ $\Rightarrow \left(-\frac{1}{a}\right)^2 + \left(\frac{5}{a}\right)^2 = 1$ => 1 + 25 = a2 \Rightarrow $a = \sqrt{2b}$ iii) Max speed when | sm (4t+ x) = 1 1.e. | Umax = | -4 x \(\sqrt{26} \times 1 \) $= 4\sqrt{2}b$ b)i) $P = 10000 + P_0 e^{kt} = P_{-1000}$ and $= \frac{dP}{dt} = k P_0 e^{kt}$ = k (P - 10000) as requiredt=6 P= 25000 -- 2 kx0 0 => 15000 = 10000 + Poe => Po = 5000 kt 1 1e. P = 10000 + 5000 6 6k (2) => 25000 = 10000 +5000 e =) 15000 = e 6th \Rightarrow 6k = ln 3 $\Rightarrow k = \frac{\ln 3}{L}$

6b) iii)
$$t = 12$$

=) $p = 10000 + 5000 e$

= $10000 + 5000 e$

= $10000 + 5000 \times 3$

= $10000 + 5000 \times 3$

= $10000 + 1000 \times 3$

=

```
(76)
i) at t=0, x=0, y=-1
   i = 12 cos 0, y = 12 sm 0
  gwen \ddot{x}(t) = 0, \ddot{y}(t) = -10
 \dot{\chi} = \int \ddot{\chi}(t) dt
   = 0 + c
=) c = 12 cos 0
 =) i = 12 ws 0
=> n = fi dt
    = 12+ cm0+D
 => x = 12 + cos 0
 j = j y(t) dt
 = -10t + E
 E = 1251n0
=>y = \( \( \) (-10t + 12 \( \) \( \) dt
     = - 5t2 + latsin 8 + F
= 3y = -5t^2 + 12t sm \theta - 1 VVV
```

```
ii) Hels roof when y =0
1.e. y=0 = -5t2+ 12 tsm30°-1
=> -5t2+6t-1=0
=) 5t2-6t+1=0
=> (5t-1)(t-1)=0
 If ball hits roof does so on
downward trajectory 1.e. at
greater value of t: t=1
1.L X = 12 x /x wo 30°
      = 6\sqrt{3} which is (6\sqrt{3}-4) m
from D VIV
iii) To land to right of D without
 litting greenhouse, ball must
cross BD 1.1. x < 4 for +1< y<0.
Limit is through D(4,0):

x:12 \pm \cos 0 = 4 \implies t = \frac{4}{12\cos 0}
y: -5t2+12tsm0=1=0 Liny
=> -5 (3 ws 0) + 12 (3 ws 0) sin 0 -1=0
=> -5 su<sup>2</sup>0 + 4 +an 0 - 1 = 0
=> -5(1+ +an 20) + 36 +an 0 -9 = 0
=> - 5+an 0 + 36+an 0 - 14 = 0
\Rightarrow \tan \theta = \frac{36 \pm \sqrt{1016}}{\sqrt{1016}}
 0 > 22.48° and < 81.62° (2dp)
```