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ALL questions are of eéqual value
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Question 1 (12 marks) [START A NEW PAGE]

sin2x

(a) Evaluate lim
x>0 Sx

(b) Find the acute angle between the lines 2x — y = 0 and x + 3y = 0,

giving the answer correct to the nearest minute.

2n(8+3x)

e
Simplify ————
© plify ————

(d) A is the point (-2, 1) and B is the point (x, y). The point P (13, -9) divides
AB exterpally in the ratio 5 : 3.

T

Find the values of x and y for point B.

(e) Solve the inequality X 3 <3
B X —

Marks



Marks

- Question 3 (12 marks\, [START A NEW PAGE]
/ Marks

(a) Find the domain and range of y = 3sin™ ( 2x - 1)
Question2 (12 marks) [START A NEW PAGE]

(A sketch of the curve is not necessary, but may, be helpful). 2
2 1 P x
(@)  Evaluate { 2x\" 7 pdx using the substitution ¥ = 1 — = 3
0 2 ® X f(x)=(1+ ) tantx find F(x) 2
Find &
(6)  Solvefor f:cos@ = sin28 for 0< 0 < 27w 3 © i :/?:—:_;2— !
(d)  Thefunction f(x) = 3+ fx —~1 issketched below.
© @) Express sinx + /3 cosx in the form Rsin(x + a) where i R 7( x)
R>0andos(xs§ 2 F(x) =3+ Jx -1
4.1
34
i) Hence, sketch y = sinx + \/5 cosx for 2 < x £ 2¢ 1
showing any x and y intercepts. 2 | l >,
0 1 2
(i) Find the general solution to sinx + V3 cosx = V2 2 ® State the domain of f (x) 1
(i) Explain why an inverse function, f™(x) , exists. 1
@iiD) Find f(x) 2

(iv) (@) On what line will the curves y = f(x) and y = f™(x)
| intersect? 1

(B) Hence, find the point of intersection of the graphs
. : y=f(x)and y = f*(x) 2

3. _4-



Question 4

(12 marks) [START A NEW PAGE]

2T

(a).  Evaluate J sin?2x dx

®

©

(@

If tan A and tan B are the roots of the equation 3x* — 5x — 1 =0,

0

find the value of tan (A + B).

Assuming that r 1, prove by induction that

a4+ ar +at + ar® + ... + ar

integers n

@

(i)

Given that the curve y = xsin™ x has only one stationary point,

r

_ a(r" - 1)
1

for all positive

show that this stationary point occurs at (0, 0) and that itisa

minimum turning point.

Hence, or otherwise, sketch the curve y = xsin™ x on the

x — y plane.

Marks

Question 5 (12ma,_ . [BEGIN A NEW PAGE]
(a) A particle, initially at a fixed point O, is moving ina straight line. After time
¢ seconds, it has displacement x metres from O’and its velocity vims™ is given by
v=6 — 2x .
i) Find the acceleration of the particle at the origin.
(i) Show that ¢ = ~-;— log,(l - g) and hence find x as a function of 7.
(i) What happens to x as ¢ increases without bound?
(b) P( 2ap,ap’ ) and Q(Zaq,aq2 ) are two points on the parabola x* = 4ay .
The tangents at P and Q meet at T which is always on the parabola x> = —4ay .
yll
x* = —4day
Q
(Zaq,aqz) P(ZGP,QPZ)
b
/ & x
)] Derive the equations of the tangents to the parabola at P and Q.
(ii) Show that T is the point (a( p+ q), apq)
(iii) Show that p* + ¢* = —6pq

Marks



Question 6 (12 marks)

@

(®)

Marks

[START A NEW PAGE]

A particle is oscillating in simple harmonic motion such that its displacement

e . d'x .
x metres from the origin is given by the equation e = —-16x, where ¢ is

time in seconds.

@) Show that x = a cos( 4r + a) is a solution for the motion of this

particle. (a and ¢ are constants) 2
(i) Initially, the velocity is 4 ms™ and displacement from the origin is 5 m.

Show that the amplitude of the oscillation is -\/2_6 metres. 2
(iii) What is the maximum speed of the particle? 2

In a particular equatorial African swamp, a colony of tsetse flies increases its
. dp
population (P) according to the differential equation & = k( P — 10000 ),

where k is the growth rate of the colony. Initially, there were 15 000 tsetse flies
and after six months there were 25 000 tsetse flies.

() Show that P = 10000 + Pe" is a solution of the above equation.
(k and P, are constants) 2
(i) Determine P, and the growth rate k in exact form. 2
(iii) Determine the number of tsetse flies after one year. 2
-7~

g

Marks
Question 7 (12 marks) [START A NEW PAGE]
2 12
(a) Find the term independent of x in the expansion of ( X + ‘E’) 3
X
s
®) AY
NOT TO SCALE
o <t 4m —b p >
12 mfs Im L—_:] [:J l:]
% GREEN HOUSE
F

A football, lying at point F on level ground is 4 metres away from and 1 metre
below the top of a flat-roofed long narrow green house. The football is kicked with an
initial velocity of 12 m/s at an angle of projection 8.

(i) Using g = —10 ms?, show that the football’s trajectory at time
¢ seconds after being kicked may be defined by the equations

x = 12tcos@ and y = —5¢* + 12rsin® — 1 where xand y
are the horizontal and vertical displacements, in metres, of the
football from the origin O shown in the diagram.

(Neglect air resistance). 3
(ii) Given that 8 = 30°, how far from D will the football land on top of the
green house? 3
(ii1) Find the range of values of 6, to the nearest degree, at which the
football must be kicked so that it will land to the right of D. 3
End of Paper
-8-
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